
JAVERS: CODE AUDIT LOGS EASILY IN JAVA
KARSTEN SILZ, 21 OCTOBER 2020

https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li

BPF.LI/DOG

SLIDES

SAMPLE CODE

HOW TO BUILD
JAVA APPS TODAY?

https://bpf.li/dog

OPTIMIZED FOR
YOUTUBE ON
4.7" SCREEN
(IPHONE 6)

SUFFERED FROM
CHANGED DATA?

SHOW AUDIT LOG TO
USERS: WHO CHANGED
WHAT WHEN HOW?

CUSTOMER: NO EMAIL

EMAIL ADDRESS: OK

COMPARE 2 VERSIONS

COMPARE 2 VERSIONS

VERSION INFORMATION

COMPARE 2 VERSIONS

VERSION INFORMATION
CUSTOMER DATA

COMPARE 2 VERSIONS

CHANGES BETWEEN VERSIONS

VERSION INFORMATION
CUSTOMER DATA

COMPARE 2 VERSIONS

WRONG!
CHANGES BETWEEN VERSIONS

VERSION INFORMATION
CUSTOMER DATA

NO EMAIL BECAUSE INITIAL
EMAIL ADDRESS WRONG!

AUDIT LOGS:
HAPPY USERS &
LOWER SUPPORT COST

HOW DO WE DO
AUDIT LOGS IN JAVA?

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

HARD!

JAVERS
CODE AUDIT LOGS

EASILY IN JAVA

Open-source project with Apache license

Mature with frequent releases (1.0 nearly six years ago)

One main contributor

Donations welcome!

JAVERS

Computes diff of 2 Plain Old Java Objects (POJOs)

Saves POJO versions as JSON in DB (relational DB or
MongoDB)

Query versions: POJOs with version data

JAVERS

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

WHERE DOES IT FIT IN?

ADD JAVERS TO PROJECT

UPDATE BACK-END

SAVE VERSION

CREATE VERSION

DTO: Data Transfer Object

Means: Whatever application sends to UI

‣ POJO with fields & ID here

‣ Property-value map

‣ List of values

WHERE DOES IT FIT IN?

BUSINESS LAYER

BUSINESS LAYER
PERSISTENCE

LAYER

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Convert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

SaveConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Save App TablesConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Save App TablesConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Create Version

Save App TablesConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Create Version JaVers Tables

Save App TablesConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Create Version JaVers Tables

Save App TablesConvert for Save

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Create Version JaVers Tables

Save App TablesConvert for Save

MY ADVICE: VERSION
EXISTING DTOS

BUSINESS LAYER DATA STORE
PERSISTENCE

LAYER

Receive DTO

Validate DTO

Create Version JaVers Tables

Save App TablesConvert for Save

MY ADVICE: VERSION
EXISTING DTOS

BUILT-IN: BYPASS
PERSISTENCE

LAYER

Reuses UI: "version DTO" for UI same as existing DTO

Choices for creating version in back-end

‣ In persistence transaction, or in new one?

‣ In business layer call, or asynchronously?

‣ In persistence data store, or in different one?

Easy to save as JSON: DTOs already serialized for UI

WHY VERSION DTOS?

Version existing DTOs

JaVers bypasses application persistence layer

WHERE DOES IT FIT IN?

WHERE DOES IT FIT IN?

ADD JAVERS TO PROJECT

UPDATE BACK-END

SAVE VERSION

CREATE VERSION

Spring Boot Starter for relational DB or MongoDB

Integration with Spring

JAR in other Java projects

Default configuration worked for me

ADD JAVERS TO PROJECT

WHERE DOES IT FIT IN?

ADD JAVERS TO PROJECT

UPDATE BACK-END

SAVE VERSION

CREATE VERSION

Version storage: Main data source in Spring Boot by
default, could be different data store

POJO - JSON mapping: Good defaults, but at least 1
annotation/JaVers registration call needed

POJO version identity: "Entity ID" (unique per POJO) +
class name

UPDATE BACK-END

public class Customer {

 private Long id;
 private String firstName;
 private String lastName;

UPDATE BACK-END: EXISTING DTO

public class Customer {

 private Long id;
 private String firstName;
 private String lastName;

UPDATE BACK-END: UPDATED DTO

@Id

POJO version identity: Unique entity ID per POJO

POJO - JSON mapping: At least @Id for entity ID

UPDATE BACK-END

WHERE DOES IT FIT IN?

GETTING JAVERS

UPDATE BACK-END

SAVE VERSION

CREATE VERSION

What: POJO (with entity ID) and user name

How

‣ In persistence transaction, or in new one?

‣ In business layer call, or asynchronously?

SAVE VERSION

private Javers javers;

 [...]

Customer customer =
 new Customer(50L, "Karsten", "Silz");

this.javers.commit("joecool", customer);

SAVE VERSION

What: POJO (with entity ID) and user name

How: Choices for transaction and synchronicity

SAVE VERSION

WHERE DOES IT FIT IN?

GETTING JAVERS

UPDATE BACK-END

SAVE VERSION

CREATE VERSION

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

QUERY ALL VERSIONS

QUERY ONE VERSION

QUERY NESTED POJOS

QUERY VERSIONS

Why: List of all versions in UI (version, author
timestamp)

Input: JQL (JaVers Query Language)

‣ Entity ID and POJO class name

‣ "Shallow scope": no nested POJOs

QUERY ALL VERSIONS

Output: List of "snapshots"

‣ Version number ("commit ID"), author, timestamp

‣ Map of POJO property values

QUERY ALL VERSIONS

JqlQuery query = QueryBuilder
 .byInstanceId(50L, Customer.class)
 .withShadowScope(ShadowScope.SHALLOW)
 .build();

List<CdoSnapshot> versions =
 this.javers.findSnapshots(query);

QUERY ALL VERSIONS: INPUT

for (CdoSnapshot aVersion : versions) {

 String versionNumber =
 aVersion.getCommitId().value();

 CommitMetadata commitMetadata =
 aVersion.getCommitMetadata();
 String author = commitMetadata.getAuthor();
 LocalDateTime time =
 commitMetadata.getCommitDate();

QUERY ALL VERSIONS: OUTPUT

Why: List of all versions in UI

Input: Entity ID and POJO class name

Output: Version number, author, timestamp

QUERY ALL VERSIONS

QUERY ALL VERSIONS

QUERY ONE VERSION

QUERY NESTED POJOS

QUERY VERSIONS

Why: Complete POJO for UI details

Input: Same JQL

‣ Same Entity ID and POJO class name

‣ Version number: From "Query All Versions"

‣ "Deep scope": All nested POJOs

QUERY ONE VERSION

Output: List of "shadows" with 1 element

‣ Version number, author, timestamp

‣ POJO

QUERY ONE VERSION

CommitId commitId = CommitId.valueOf("1.0");

JqlQuery query = QueryBuilder
 .byInstanceId(50L, Customer.class)
 .withCommitId(commitId)
 .withShadowScope(ShadowScope.DEEP_PLUS)
 .build();

List<Shadow<Customer>> oneVersion =
 this.javers.findShadows(query);

QUERY ONE VERSION: INPUT

for (Shadow<Customer> aVersion : oneVersion) {
 String versionNumber =
 aVersion.getCommitId().value();

 CommitMetadata commitMetadata =
 aVersion.getCommitMetadata();
 String author = commitMetadata.getAuthor();
 LocalDateTime time =
 commitMetadata.getCommitDate();

 Customer customer = aVersion.get();

QUERY ONE VERSION: OUTPUT

Why: Complete POJO for UI details

Input

‣ Entity ID and POJO class name

‣ Version number

Output: POJO

QUERY ONE VERSION

QUERY ALL VERSIONS

QUERY ONE VERSION

QUERY NESTED POJOS

QUERY VERSIONS

POJOs can contain other POJOs

JaVers stores other POJOs with entity ID separately
from parent POJO

Impact on queries?

QUERY NESTED POJOS

QUERY NESTED POJOS
public class Address {
 @Id
 private Long id;

 […]

public class Customer {
 @Id
 private Long id;
 private Address address;

: NEW CLASS

QUERY NESTED POJOS: SAVE VERSION
CUSTOMER

Version 1

ADDRESS

Version 1

QUERY NESTED POJOS: SAVE VERSION
CUSTOMER

Version 1

ADDRESS

Version 1

CUSTOMER

ADDRESS

Version 2

Update address

QUERY NESTED POJOS: SAVE VERSION
CUSTOMER

Version 1

ADDRESS

Version 1

CUSTOMER

Version 1

ADDRESS

Version 2

Update address

NESTED POJO VERSIONS DON’T UPDATE
PARENT POJO VERSION - BUT USERS EXPECT IT!

It’s a feature, not a bug!

Same in other libraries (e.g., Hibernate Envers)

My Solution

‣ Always change parent POJO to force new version

‣ Add "flip-flopping" boolean field (not sent to UI)

QUERY NESTED POJOS

Problem: Nested POJO versions don’t update
parent POJO version, but users expect it

My Solution: Always change parent POJO to force new
version

QUERY NESTED POJOS

QUERY ALL VERSIONS

QUERY ONE VERSION

QUERY NESTED POJOS

QUERY VERSIONS

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

Input: 2 POJOS

Output: List of objects, derived from Change class

‣ ValueChange: Simple property change

‣ NewObject: Nested POJO added

‣ ObjectRemoved: Nested POJO removed

Change Count: Sometimes customized per POJO

COMPARE 2 VERSIONS

USER: 2 CHANGES

USER: 2 CHANGESJAVERS: 1 CHANGE

USER: 2 CHANGES

JAVERS: 2 CHANGES
LABEL & EMAIL

JAVERS: 1 CHANGE

USER: 2 CHANGES

TURN 3 CHANGES IN
JAVERS INTO 2!

JAVERS: 2 CHANGES
LABEL & EMAIL

JAVERS: 1 CHANGE

Customer one =
 new Customer(50L, "Karsten", "Silz");
Customer two =
 new Customer(50L, "Joe", "Cool");

Diff differences =
 this.javers.compare(oldOne, newOne);

COMPARE 2 VERSIONS: INPUT

Changes listOfDifferences =
 differences.getChanges();

for (Change aChange : listOfDifferences) {
 System.out.println(aChange.toString());
}

COMPARE 2 VERSIONS: OUTPUT

ValueChange{ 'firstName' value changed from
'Karsten' to 'Joe' }

ValueChange{ 'lastName' value changed from
'Silz' to 'Cool' }

COMPARE 2 VERSIONS: CONSOLE

Input: 2 POJOS

Output: List of Change instances

Change Count: Sometimes customized per POJO

COMPARE 2 VERSIONS

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

New UI, generic with
version information

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

Reuses UI, version
information

New UI, generic with
version information

Extends UI with diff

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

Reuses UI, version
information

New UI, generic with
version information

Extends UI with diff

QUERY VERSIONS

CREATE VERSION

COMPARE 2 VERSIONS

JAVA BACK-ENDFRONT-END

SHOW ONE VERSION

SHOW ALL VERSIONS

COMPARE 2 VERSIONS

Reuses UI, version
information

New UI, generic with
version information

AUDIT LOG: WHO CHANGED WHAT WHEN HOW

AUDIT LOGS: HAPPY USERS & LOWER SUPPORT COST

JAVERS CREATES, STORES & QUERIES VERSIONS AND COMPUTES
DIFFS - WE HAVE LESS CODE TO WRITE

VERSION EXISTING DTOS - WE REUSE CODE

JAVERS
CODE AUDIT LOGS

EASILY IN JAVA

More on Spring Boot configuration

More POJO mapping customizations (ignoring or
renaming fields)

How to reduce POJO JSON size in data storage

What JaVers writes to its tables

WHAT’S IN THE SAMPLE CODE?

BPF.LI/DOG

SLIDES

SAMPLE CODE

HOW TO BUILD
JAVA APPS TODAY?

https://bpf.li/dog

